
 1 

  

  

  

GEAR.EXE  

          Technical Documentation  

  

  

  



 2 

TABLE OF CONTENTS  

  

1. Context  
  
2. Architecture Overview  
   2.1 Router  
   2.2 Mirror & MirrorProxy  
   2.3 Gear Program  
   2.4 Executors  
   2.5 Middleware (Symbiotic)  
   2.6 Clients & SDK (Sails)  
  
3. System Flows  
   3.1 Program Lifecycle  
   3.2 Validator Authority (Symbiotic → Router)  
   3.3 Settlement & Finality  
   3.4 Pre-Confirmation  
  
4. Design Principles  
   4.1 Input Ordering  
   4.2 Per-Program Queues  
   4.3 Determinism  
   4.4 Parallel Execution  
   4.5 Timing Windows  
   4.6 Reverse-Gas Model  
   4.7 Reorg Handling & Batch Chaining  
   4.8 Safety Constraints  
  
5. Economic Model  
   5.1 Token & Bridge Scope  
   5.2 Reward Distribution  
   5.3 Slashing Mechanics  
   5.4 System Parameters  
  
6. Glossary  



 3 

1.CONTEXT  

  

Gear.exe is a decentralized execution co-processor that lives next to Ethereum L1. 
Validator-operated executors watch Router/Mirror contracts, execute uploaded WASM programs 
(Gear runtime), and, by validator consensus, finalize state transitions back to Ethereum. There 
are no Gear blocks, no shared ledger — only per-program state roots mirrored on L1.  

The core UX goal is to enable real-time dApps with gas-abstracted execution: users pay only 
ETH for L1 message submission, while program execution costs are covered from the 
program’s Executable Balance in wVARA. This architecture is built around the Reverse-Gas 
Model, shifting compute payment away from the sender and into the program’s own runtime 
budget.  
The Key differences vs rollups. are: no single sequencer, no L2 blocks, no global L2 state. 
Ordering and delivery arise from validator consensus on per-program transitions. Horizontal 
scaling comes from independent program queues and parallel execution.  

  

LINKS:  

  
Gear.exe GitHub - GitHub - gear-tech/gear: Web3 Ultimate Execution Engine  

Gear Whitepaper - Gear.exe Whitepaper  

Official Website - Gear Technologies  

  

https://github.com/gear-tech/gear
https://gear-tech.io/gear-exe/whitepaper/
https://gear-tech.io/gear-exe


 4 

2.ACTORS  

Router (Ethereum L1) - central on-chain contract coordinating code registration, program creation, 
and validator-verified state transitions.  
Responsibilities:  

• Stores the registry of approved WASM codes.  
• Deploys Mirror contracts.  
• Verifies signed state transitions.  
• Maintains validator key lists and runtime version control. Emits system-level events to trigger 

off-chain processing.  
• Handle rewards and slashing commitments.  

  
Mirror (Ethereum L1) - On-chain representation of a single Gear program on Ethereum side.  
Responsibilities:  

• Holds the program’s current stateHash.  
• Accepts incoming messages.  
• Allows top-ups of Executable Balance in wVARA.  
• Emits user-facing events and value transfer notifications.  
• Binds program logic to Router governance and validator consensus.  

  
Executors (P2P) - Validator-operated nodes executing program logic and forming commitments for 
Router.  
Responsibilities:  

• Observe L1 events from Router/Mirror.  
• Execute WASM programs deterministically in the Gear runtime.  
• Maintain local program queues and state DB.  
• Aggregate validator signatures for new state roots.  
• Submit commitments to Router for on-chain verification.  

  
Validators / Operators (via Symbiotic) - Stakers operating executors and participating in validator 
consensus.  
Responsibilities:  

• Provide and rotate validator signing keys.  
• Maintain uptime and correct execution.  
• Participate in validator set elections per era.  
• Accept slashing penalties for misbehavior.  
• Earn rewards for validated execution work  



 5 

Clients / SDK (Sails) - developer-facing API layer for interacting with Gear programs without on-
chain decoding.  
Responsibilities:  

• Encode and decode messages/events based on program IDL.  
• Generate strongly typed client SDKs (sails-js, Rust).  
• Integrate with @gear-js/api for connection and subscriptions.  
• Provide a stable contract interface for dApp developers.  

  

  

  



 6 

3. COMPONENTS  

 
General component overview  

  

3.0 Gear program (Core, Gear.exe)  

The Gear Program is the on-chain representation of a WASM smart contract running inside the 
Gear runtime. It encapsulates program logic, state, and ABI definitions, and is the execution target 
for messages routed from Ethereum via the Mirror contract.  

The program is deployed and registered through the Router, either as a minimal instance (via 
createProgram(...)) or with an attached ABI interface (createProgramWithAbiInterface(...)) for typed 
interaction. Once created, it is represented on Ethereum L1 by a Mirror contract that serves as its 
on-chain proxy.  

• Execution Target: Receives messages from L1 through the Mirror and processes them inside 
Gear’s WASM runtime.  

• State Management: Maintains its own isolated storage state (stateHash represents this state 
on L1).  

• Interface Contract: Optionally exposes a strongly typed ABI (Sails interface) for client 
encoding/decoding.   

• Deterministic Addressing: Program ActorId and L1 Mirror address are derived from (codeId, 
salt) combination.  



 7 

3.1 Router (Core, Ethereum L1) 

The Router is the on-chain coordination hub of Gear.exe. It anchors all off-chain execution back to 
Ethereum by finalizing batches of work with validator signatures. Whenever executors replay 
program queues and produce transitions, they eventually come back to the Router to have those 
results recognized on L1. In that sense, the Router is the single entry point where Gear.exe state 
becomes Ethereum state.  

Source: Router.sol, iRouter.sol  

  
At a high level, the Router takes care of four things:  

• Validates code: developers submit a WASM blob (EIP-4844) and call 
requestCodeValidation(codeId). Executors verify it off-chain; a later batch carries the result.  

• Creates programs: once a codeId is validated, anyone can deploy a deterministic Mirror clone 
via createProgram(...) or createProgramWithAbiInterface(...).  

• Finalizes execution: commitBatch(...) atomically applies everything for a given head — 
program transitions, code results, rewards, and the next validator set — if and only if validator 
signatures reach the threshold and the batch correctly chains.  

• Rotates validators: within explicit windows, batches can commit the next era’s validator 
addresses plus FROST key material. The Router stores that and activates it at the next era 
start.  

  
What is Inside of the commitBatch(...)  
The commitBatch(...) call is the single settlement entry point. Each batch is a structured package 
containing program state transitions, code validation results, reward distribution instructions, and 
(when applicable) a new validator set. The Router verifies signature thresholds, hash chaining, and 
timing constraints. If any check fails, the entire batch reverts atomically.  
After all four sections are assembled, the Router computes a single batchHash that covers their 
sub-hashes along with the previous batch hash and the current head/timestamp. Validator 
signature verification is the final step: the Router checks that enough signatures over this 
batchHash meet the configured threshold against the active FROST key. If the threshold is not met, 
or if any section is malformed or out of window, the entire batch reverts atomically.  

 

Ordering & safety:  
The Router enforces strict rules when finalizing a batch. Each batchHash must chain to the 
previously committed one, ensuring there are no gaps or forks. Timestamps must progress 
monotonically and never fall behind the last committed batch. Validator signatures must meet the 
configured threshold and verify against the aggregated FROST key of the current era. When 
included, the validator set update must strictly target currentEra + 1 and appear within the election 
window. Finally, every StateTransition must belong to its designated Mirror contract, preventing 
cross-program execution. Any violation of these conditions causes the entire batch to revert 
atomically.  

https://github.com/gear-tech/gear/tree/master/ethexe/contracts/src/Router.sol
https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/IRouter.sol


 8 

From a developer’s perspective, the Router exposes only a few public calls — 
requestCodeValidation(...), createProgram(...), and commitBatch(...). Everything else is internal to 
its settlement flow.  

  

3.2 Mirror (Core, Ethereum L1) 

The Mirror is the L1 twin of a Gear program. It queues user requests, applies state transitions 
authorized by the Router, and emits user-level events for applications and indexers. There are two 
deployments: the main Mirror implementation, and MirrorProxy — a minimal proxy that always 
points to the latest Mirror version. MirrorProxy ensures consistency and provides an ABI-friendly 
interface for developer tools and explorers.  

Source: Mirror.sol, IMirror.sol, MirrorProxy.sol  

  

At a high level, the Mirror takes care of four things:  

• Queues user inputs. Users or contracts can send messages, replies, value claims, or balance 
top-ups. The Mirror records the request, transfers any attached wVARA to the Router, and 
signals executors to process it.   

• Top-up execution balance. Through the executableBalanceTopUp(...) call, users can add 
wVARA to a program’s balance. This serves as the entry point for the reverse-gas model, 
ensuring that execution costs are covered from the program’s funds.  

• Applies transitions. Only the Router can call performStateTransition(...). The Mirror checks 
ownership, executes outgoing messages or replies, transfers value claims, and updates the 
program’s state hash.  

• Manages lifecycle. On deployment, the Router initializes the Mirror. Until the first message is 
sent, only the initializer may interact. Once a program exits, queueing is disabled and remaining 
balance can be passed to an inheritor.  

• Emits events. The Mirror re-emits program-level outputs and forwards custom logs, so 
applications can subscribe directly on Ethereum.  

  

What Happens Inside performStateTransition  
When the Router finalizes a batch, it invokes each affected program’s Mirror with a StateTransition. 
The Mirror first verifies that the transition truly belongs to this program. It then delivers any outgoing 
messages or replies to external accounts or contracts, transfers wVARA for pending claims, and 
updates the stored state hash to reflect the new program state. If the program has exited, the Mirror 
also records the designated inheritor and transfers any remaining locked balance. Finally, the Mirror 
returns a transition hash back to the Router, which incorporates it into the overall batch hash. The 
entire process is atomic: if any step fails, the Router reverts the whole batch, ensuring that state 
transitions across all programs remain consistent.  

How Gear.exe Avoids a Decoder Contract   
From a developer’s perspective interaction with a Gear program is intentionally designed to feel 
native to Ethereum users. Thanks to the MirrorProxy design, a Gear program appears on Ethereum 
as if it were a standard smart contract. When an ABI is attached, the proxy exposes not only the 

https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/Mirror.sol
https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/IMirror.sol
https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/MirrorProxy.sol


 9 

utility methods like sendMessage, sendReply, claimValue, or executableBalanceTopUp, but also the 
program’s custom functions defined in its interface. These show up directly in explorers such as 
Etherscan under “Write As Proxy,” so developers and users can call them just like any other 
Ethereum contract.  

  
If no ABI is attached, programs can still be accessed through the raw entrypoint 
sendMessage(bytes), where SCALE-encoded payloads are sent directly. In either case, event 
decoding is handled externally by the Sails framework based on the program’s IDL, so no on-chain 
decoder contract is required. This avoids additional gas overhead for ABI translation, while still 
allowing applications and wallets to display program events in a familiar, human-readable form.  

  

3.3 Executors (Off-Chain)  

Executors are validator-operated nodes that monitor Router and Mirror events, run the Gear WASM 
runtime off-chain, process program queues deterministically, and co-sign per-block batches that the 
Router finalizes on L1. There is no centralized sequencer; ordering emerges from validator 
consensus on each batch.  

  
How it works on high-level  
Each program has its own message queue, its own state, and its own lifecycle. There is no global 
queue and no sequencer deciding a single order for everyone. Instead, a set of validators (running 
executors) watch Ethereum, replay inputs off-chain, and then collectively attest to “what happened 
to this block” in a batch that the Router finalizes on L1.  

  
3.3.1 Observation Phase  
Executors order all inputs deterministically: logs are sorted by (blockNumber, txIndex, logIndex) per 
program before execution.  

Two classes of queues are maintained:  

• System queue (Router): code validation requests, compute/timeline updates, rewards, validator 
elections, program balances.  

• Program queues (Mirror): ingress messages, replies, claims, and top-ups for a specific Mirror 
address.  

  
3.3.2 Execution Phase  
Gear achieves parallel execution naturally. Each program has its own private queue; executors may 
run multiple programs concurrently, while strictly preserving intra-program order. This yields 
horizontal scalability with the number of active programs.  

  
Compute policy applies a free threshold first, then meters execution time against the program’s 



 10 

Executable Balance (wVARA). If the balance is insufficient, a message remains queued until the 
program is topped up.  

  
A StateTransition includes:  

• newStateHash,  
• outgoing messages[],  
• valueClaims[],  
• optional exited/inheritor,  
• valueToReceive (pre-transfer by Router).  

Executors also capture event frames for Sails passthrough, which the Mirror re-emits as native 
Ethereum logs after safety checks.  

  
3.3.3 Aggregation & Signing Phase  
Executors package results into a batch containing:  
• program state transitions (chain commitment),  
• code validation outcomes,  
• reward distributions,  
• validator set commitments (when within the election window).  

The batch is hashed (batchHash) together with the previous head. Validators co-sign this hash 
using the FROST threshold scheme; acceptance requires signatures from at least the configured 
percentage of the active validator set.  

  
3.3.4 Settlement Phase  
When submitted, the Router first pre-transfers any valueToReceive to the program, then calls 
performStateTransition(...).  

Election and timing guards apply:  

• validator commitments must target currentEra + 1 and be included inside the election window;  
• timestamps must be strictly monotonic relative to the latest committed batch.  
Executors follow best-head discipline for reorg handling: on reorg, per-program queues are rebuilt 
for the new head and transitions are recomputed. Any non-chaining batch is rejected on-chain.  

  

3.4 Middleware (Symbiotic layer)  

Validators are the authority that co-sign Gear.exe batch commitments, while operators run the off-
chain executors that observe Router and Mirror events and derive program state transitions. The 
validator set is sourced via the Symbiotic restaking stack and is activated on Ethereum L1 by the 
Router contract on an era schedule. Rewards for operators and stakers are routed on-chain through 
a dedicated Middleware contract.  

Source: Middleware.sol, IMiddleware.sol  

https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/Middleware.sol
https://github.com/gear-tech/gear/blob/master/ethexe/contracts/src/IMiddleware.sol


 11 

Roles: 
• Operator — an entity that runs executors. Operators register and opt in via Symbiotic and are 

tracked by the Middleware contract.  
• Validator — an on-chain authority address, that co-signs batch commitments. Each era’s 

validator set (addresses plus FROST key material) comes from Symbiotic election output and is 
activated by the Router.  

• Vault (VA) — a Symbiotic staking vault that holds wVARA collateral, delegates stake to 
operators, routes staker rewards, and participates in slashing. Vaults must be registered in 
Middleware.  

  
Operator lifecycle  
To be recognized by the protocol, an operator must:  

• Register via Symbiotic and opt in to the subnetwork.  
• Be explicitly enabled in Middleware.  
• Be subject to disable or unregister calls with grace periods.  

  
Once registered, an operator’s stake is tracked through delegated vaults. Middleware uses stake 
snapshots to calculate operator weights and applies a deterministic process to select the top 
operators by stake, forming the validator set for the next era.  

  
Vault lifecycle  
Vaults represent restaking collateral from nominators. A vault holds wVARA and delegates stake to 
one or more operators. In order to be accepted, it must:  

• be registered in Middleware with parameters such as token type, epoch duration (at least twice 
the era length), rewards routing, veto/slasher setup, and resolvers.  

• comply with enable, disable, and unregister rules that include delays to avoid destabilizing 
elections mid-era.  

  
Registered vaults contribute their stake weights to operator elections and also receive routed 
rewards or slashing penalties.  

  
Rewards routing  
During batch application, the Router approves wVARA to the Middleware, which then distributes 
rewards:  

• Operator rewards are sent to operator reward contracts, proportional to performance and 
election outcome.  

• Staker rewards are distributed across registered vaults and further split among their nominators.  

  
This separation ensures that both node operators and capital providers are rewarded transparently.  



 12 

Slashing  
To preserve safety, Middleware enforces slashing through a three-step process:  

• Request — a slash is proposed against one or more operators or vaults, with amounts and 
reasons.  

• Veto/Delay — each vault’s VetoSlasher contract defines windows in which slashes can be 
vetoed or must wait before execution.  

• Execute — once the delay passes and no veto remains, the slash is finalized.  

  
This ensures misbehaving operators or misconfigured vaults can be penalized without destabilizing 
validator elections.  

  
Timing and safety  
Middleware validates its parameters against the Router’s era schedule to avoid conflicts. For 
example, vault epochs must be at least twice the era length, and veto or slash delays must align 
with era boundaries. This guarantees that elections, reward distribution, and slashing do not 
interfere with the Router’s validator rotation cadence.  

  

Sails/ SDK  

Sails is the developer toolkit for Gear programs: it lets you author programs in Rust, define their 
interfaces (IDL), and generate client integrations for Ethereum. Sails complements the on-chain 
contracts (Router/Mirror) by providing type-safe encoding/decoding, ABI generation, and ready-to-
use client bindings.  
Sources: Sails GitHub, Docs wiki  

 

What Sails provides  

• Rust macros, types, and helpers to define messages, replies, and events with a strongly typed 
interface (IDL).  

• Solidity ABI interface contract generated from the Rust IDL (optional), attachable at program 
creation so explorers and wallets show human-readable methods.  

• Client bindings for applications: TypeScript (sails-js / ethers.js), plus bindings for Rust and .NET, 
enabling type-safe calls and subscriptions without manual SCALE handling. 
 

Encoding & type safety 

Typed calls are compiled against the Sails IDL. At runtime, Sails encodes requests into SCALE and 
signs/dispatches them as messages to the program’s Mirror. Replies are decoded back to the 
expected Rust/TypeScript types on the client side. Because decoding is handled off-chain by the 
generated bindings and the IDL, no on-chain decoder contract is required; this avoids extra gas for 
ABI translation while preserving a familiar UX.  

https://github.com/gear-tech/sails
https://wiki.vara.network/docs/build/sails


 13 

Event framing to Ethereum  
Sails maps Rust events to Ethereum logs via a lightweight event frame. Programs emit frames 
(topics count, topics, ABI payload) to a reserved address ETH_EVENT_ADDR. The Mirror parses 
the frame and re-emits it as a native EVM log (log1..log4). Selector-collision guards ensure protocol 
safety. The result is a 1:1 mapping of program events to Ethereum logs that indexers and explorers 
can consume without custom decoders.  

  

  

  

  

  

  

  

  

  

  



 14 

4.SYSTEM FLOWS  

  

4.1 Program Lifecycle Flow  

A Gear program follows a clear sequence of steps: it starts as a WASM blob on Ethereum, becomes 
an active instance that processes messages, and finally produces state updates anchored on L1. 
Here’s how it works end-to-end. 

Involved Components  

• Router.sol — entrypoint for validation, program creation, and batch settlement.  
• Mirror.sol — per-program proxy that manages queues, value pulls, and event emission.  
• Executors — off-chain workers that run WASM and prepare StateTransitions.  
• Middleware.sol — reward and slashing router.  

  

 
  



 15 

1. Uploading the code  
A developer starts by submitting a WASM blob inside an EIP-4844 transaction and calling 
requestCodeValidation(codeId) on the Router.  

The Router records that this codeId is now pending validation and emits a 
CodeValidationRequested event. Executors notice this, fetch the blob, run it through validators, and 
prepare a code-commitment for inclusion in the next batch.  

Sources: Router.sol::requestCodeValidation, Router.sol::CodeValidationRequested  
  

2. Code validation result  
At batch time, executors include a CodeCommitment for that codeId.  

The Router applies it via commitCodes(...): if the code is valid, it gets marked Validated (and can 
now be used to create programs). If not, the request is dropped. Either way, an event 
CodeGotValidated(codeId, valid) goes on-chain.  

 

3. Creating a program  
Once a codeId is validated, anyone can spin up a new program by deploying its Mirror instance.  
There are two call types:  

• createProgram(...) — minimal clone, no ABI surface.  
• createProgramWithAbiInterface(...) — same, but with a Solidity ABI interface attached for typed 

interaction.  
The Router deploys the program instance deterministically (salt = keccak256(codeId, salt)), links the 
program’s actorId to the codeId, emits ProgramCreated, and calls Mirror.initialize(...).  

With an ABI attached, explorers like Etherscan will show your custom methods directly in “Write as 
Proxy.” Without it, interaction happens via the raw sendMessage(bytes, value, callReply) entrypoint.  

 
4. Initialization  
Every program must be initialized. The initializer address sends the first message to the Mirror. The 
Mirror enqueues it and emits MessageQueueingRequested.  
If the message carries value, the Mirror immediately transfers the attached wVARA from the sender 
to the Router. These funds are later credited back to the program during execution, ensuring that 
value transfers are accounted for deterministically.  

  

https://eips.ethereum.org/EIPS/eip-4844


 16 

 
  

5. User interaction  
From here, anyone can interact with the program by sending messages:  

• sendMessage(payload, value, callReply)  
• sendReply(repliedTo, payload, value)  
• executableBalanceTopUp(value)  
• claimValue(claimedId)  

Each call is just a simple transaction to the Mirror. Executors watch these events, classify them into 
the right per-program queues, and prepare them for execution in strict (blockNumber, txIndex, 
logIndex) order. 

  

6. Off-chain execution  
Executors then feed each program’s queue into the Gear WASM runtime. Computation is charged 
deterministically: every program enjoys a small free threshold first, after which execution is paid 
from its executable balance. The runtime produces a StateTransition, which describes how the 
program has changed. It includes the new state hash, any outgoing messages or replies, and 



 17 

pending value claims. If the program is terminating, the transition also records the exit status and 
inheritor information. I  
n addition, it may specify valueToReceive — funds that must be transferred into the program before 
the transition can apply. When the program has emitted Sails events, these are framed so the Mirror 
can later re-emit them as native Ethereum logs. 

 

7. Settlement on Ethereum L1  
Finally, the aggregated batch is submitted with commitBatch(...), signed by at least the required 
validator threshold. The Router verifies chain continuity, timestamp monotonicity, and validator 
signatures against the current era’s FROST key. Once verified, the entire batch is applied atomically   

In a successful batch, the Router processes all sections in order:  

• Transfers any valueToReceive into the program before execution.  
• Calls Mirror.performStateTransition(...) for each transition, delivering messages and replies, 

updating state, and emitting program events.  
• Applies code validation results.  
• Routes operator and staker rewards via the Middleware.  
• If included, locks in the next-era validator set.  

  
Afterward, the Router emits BatchCommitted, HeadCommitted, and NextEraValidatorsCommitted. 
At this point, the program’s state is final on Ethereum.  

  

4.2 Authority Flow (Symbiotic → Router)  

The Authority Flow explains how economic stake from Symbiotic restaking transforms into active 
validator authority on Ethereum L1.  

It covers: how stakers fund vaults, how operators register, how elections produce the next validator 
set with cryptographic key material, how this commitment is activated by the Router, and how 
authority is exercised through signing, rewards, and slashing.  

https://docs.symbiotic.fi/


 18 

 
  

Involved components:  
• Symbiotic Vaults — hold wVARA collateral and delegate stake to operators.  
• Middleware.sol — registry for operators and vaults; provides stake views, election helpers, 

rewards/slashing routing.  
• Router.sol — accepts validator commitments inside batches, activates new sets, enforces 

signatures.  
• FROST/DKG tooling  

  
  
Step 1 — Stake & Opt-In  
Stakers deposit wVARA into Symbiotic vaults, which aggregate collateral and delegate it to chosen 
operators. To participate, operators must opt in to the Gear network and register in Middleware 
using Middleware.registerOperator(...). Vaults must also register with Middleware.registerVault(...), 
specifying parameters such as token type, epoch length, and slashing configuration. Once 
registered, operators become eligible for validator elections and staker collateral is linked to 
operator performance.  



 19 

Sources: Middleware::registerOperator, Middleware::registerVault  

 

Step 2 — Election  
At election time, Middleware provides snapshots of operator stakes through functions such as 
getActiveOperatorsStakeAt(ts). A deterministic selection process (makeElectionAt(ts, 
maxValidators)) chooses the top operators by stake. In parallel, executors perform distributed key 
generation (DKG) to produce the aggregated FROST public key and verifiable secret sharing (VSS) 
commitment for the next era. Together, these outputs define the validator set for the upcoming era.  
Sources: Middleware::makeElectionAt, Middleware::getActiveOperatorsStakeAt, FROST/DKG 
tooling 

 

Step 3 — Validators Commitment  
Executors package the new validator set into the next batch. The commitment includes:  

• validator addresses  
• the aggregated public key  
• the VSS commitment  
• and the target era index (currentEra + 1)  

  
This commitment is hashed together with other batch sections (chain, code, rewards) and submitted 
to the Router for finalization.  
Sources: Router::_commitValidators 

 

Step 4 — Activation  
When Router.commitBatch(...) is called inside the election window, the Router verifies the proposal: 
the era index must equal currentEra + 1, the timing must fit the election window, and the validator 
list must be non-empty. If valid, the Router stores the set, locks in the FROST material, and emits 
NextEraValidatorsCommitted(startTimestamp). This locks the new validator set, which activates at 
the beginning of the next era.  

Sources: Router::commitBatch, IRouter::NextEraValidatorsCommitted 

 

Step 5 — Signing & Finality.  
For each batch in the current era, executors gather FROST signatures from the active validator set 
over the batch hash. The Router verifies chain continuity, monotonic timestamps, and ensures the 
signatures meet the threshold (IRouter::validatorsThreshold, IRouter::signingThresholdPercentage). 
On success, the Router applies all batch sections atomically. This is how validator authority is 
exercised: only the elected set can finalize batches, and only with threshold agreement.  

Sources: Router::commitBatch, IRouter::validatorsThreshold, IRouter::signingThresholdPercentage 

 



 20 

Step 6 — Rewards Distribution.  
If the batch includes a rewards section, the Router approves wVARA to Middleware and calls:  

• Middleware.distributeOperatorRewards(...) for operator payouts,  
• Middleware.distributeStakerRewards(...) for staker payouts via vaults.  

  
Middleware then forwards rewards to Symbiotic’s distribution contracts. This ensures both node 
operators and stakers are rewarded transparently.  

Sources: Router::_commitRewards, Middleware::distributeOperatorRewards, 
Middleware::distributeStakerRewards 

 

Step 7 — Slashing  
If misbehavior is detected, Middleware can propose a slash using requestSlash(...). Each vault’s 
VetoSlasher contract defines veto and delay windows. If no veto is made, executeSlash(...) finalizes 
the penalty. Middleware ensures vault epochs and slashing windows align with Router eras to keep 
elections and rotations stable. This mechanism penalizes misbehaving operators or vaults without 
destabilizing the system.  

Sources: Middleware::requestSlash, Middleware::executeSlash, Middleware::_validateStorage  

  

4.3 Settlement & Finality Flow  

This flow explains how the validator set applies authority to make execution final on L1: what 
exactly is signed, how batch sections are applied, which contracts are involved, and which checks 
guarantee atomic “all-or-nothing” outcomes. If the Authority/Validators flow explains where authority 
comes from, this section shows how that authority is exercised per block.  



 21 

 
  

  
Involved Contracts  
• Router (L1) — central settlement entry point (commitBatch)  
• Mirror (L1) — per-program proxy that applies transitions (performStateTransition)  
• Middleware (L1) — reward/slashing routing  

  
Step 1 — Batch Construction (off-chain)  
Executors order all pending inputs (per-program queues + system requests), execute Gear WASM 
programs deterministically, and produce:  

• StateTransitions (new stateHash, messages, value transfers, exits)  
• CodeCommitments (validation results)  
• RewardsCommitment (distribution root)  
• ValidatorsCommitment (if inside election window)  

The batch is hashed (batchHash) using Gear’s primitives. Validators co-sign this hash with FROST 
keys.  



 22 

Step 2 — Batch Submission (on-chain entry) 
Once signatures are aggregated, anyone can bring the batch on-chain by calling 
Router.commitBatch(...). This is the single settlement entry point that hands the package to L1.  

Source: Router.sol::commitBatch 

 

Step 3 — Signature Verification (current validator set)  
Before any state changes, the Router verifies that the new batch chains to the previously finalized 
one, that timestamps move forward monotonically, and that signatures from the current validator set 
meet the configured threshold. Only a batch that satisfies these checks proceeds; otherwise it is 
rejected as a whole.  

Sources: IRouter::validatorsThreshold, IRouter::signingThresholdPercentage  

  
Step 4 — Application  
A verified batch is applied atomically. First, for each state transition the Router transfers any 
valueToReceive to the target program and invokes Mirror.performStateTransition(...), which delivers 
messages and replies, updates the program’s state hash, and emits program events.   

Next, code-validation results are finalized; rewards are routed to Middleware and distributed to 
operators and stakers; and, if present and within the election window, the next validator set is stored 
for activation at the next era.  

Sources: Mirror.sol::performStateTransition, Router::_commitCodes, Router::_commitRewards, 
Middleware::distributeOperatorRewards, Middleware::distributeStakerRewards, 
Router::_commitValidators 

 

Step 5 — Finality signals  
Once the batch is fully applied, the Router emits BatchCommitted, HeadCommitted, and 
NextEraValidatorsCommitted. These events mark the moment when off-chain execution has been 
anchored to Ethereum L1, making the results immutable and final.  

  

 
 
 
 
 



 23 

4.4 Pre-confirmation flow  

 
 

Pre-Confirmation is a mechanism that allows users to see the result of program execution almost 
instantly, before the transaction is finalized on Ethereum L1. In practice, the user submits a 
transaction to a program’s Mirror, and the SDK can immediately fetch the execution outcome via 
RPC.  
The flow is the same as normal execution: executors track the best Ethereum L1 head, collect and 
order incoming inputs (Router and Mirror logs), and process them through the Gear WASM runtime. 
The resulting state transitions are signed with the current era’s validator set. The SDK fetches this 
attestation over RPC, verifies it against the active era public key provided by the Router, and 
displays the program’s results and events to the user.  
Later, when the batch for that same head is submitted on-chain via Router.commitBatch(...), the 
process continues in the usual way: the Router checks signatures and batch chaining, applies the 
state transitions, and anchors them as final Ethereum L1 state. In this way, Pre-Confirmation uses 



 24 

the same execution and signing mechanism as final settlement, but makes the results available to 
applications immediately via RPC, with finality coming later in the normal batch process.  

  

  

  

  
  

  

  
  
  
  

  

  

  
  



 25 

5.DESIGN DETAILS  

5.1 Ordering of inputs  
Ordering of inputs is the first discipline that Gear.exe enforces when consuming Ethereum L1 
events. Every block on Ethereum may emit many Router and Mirror logs, and executors must turn 
this raw, unordered stream into a strict sequence that can be deterministically replayed by every 
validator. The rule is simple but absolute: all logs are sorted by (blockNumber, txIndex, logIndex) 
and then classified into system events (from Router) and program events (from Mirrors). This 
guarantees that no executor can reorder or skip an input — if two validators observe the same 
Ethereum head, they will construct the exact same sequence of inputs. This ordering discipline is 
what allows the system to remain leaderless, since determinism replaces the need for a sequencer.  

System events such as CodeValidation, BatchSettings, and ValidatorElection always enter a 
dedicated system queue before any per-program messages. This ensures that governance 
changes, validator rotations, and execution policy updates are consistently applied prior to 
processing user-level messages in program queues.  

  

5.2 Per-program Queues  

Once inputs are ordered, Gear.exe separates them into per-program queues. Each program 
(represented on L1 by its Mirror contract) has its own isolated queue where messages, replies, 
claims, and top-ups are enqueued. Executors consume these queues independently, ensuring that 
the ordering discipline is preserved within each program but does not constrain other programs.  

This isolation is the key design choice that gives Gear.exe its parallelism. Unlike rollups or L2s that 
enforce a single global sequence of transactions, Gear treats every program as its own self-
contained unit of execution. As long as intra-program ordering is respected, executors are free to 
schedule different programs concurrently on separate threads or nodes. The result is horizontal 
scalability: more programs can run in parallel without creating contention or bottlenecks at the 
system level.  
In other words, the Router ensures global input ordering, but Mirrors enforce per-program locality. 
Together, this model guarantees determinism and safety while enabling unbounded parallel 
execution. 

 

5.3 Determinism  

Determinism is the foundation of validator agreement in Gear.exe. Every executor that observes the 
same Ethereum head must produce exactly the same state transitions for a given program. To 
make this possible, the runtime enforces strict rules at every layer:  

Ordered inputs — Executors consume the same (blockNumber, txIndex, logIndex)–sorted stream 
of Router and Mirror events.  
  
Deterministic WASM runtime — Programs are executed inside a sandboxed Gear runtime, where 
system calls, gas metering, and message delivery are all precisely defined. No external randomness 



 26 

or nondeterministic syscalls are allowed.  
  
State hashing — Each transition is represented by a cryptographic hash (stateHash) that covers 
the program’s full storage, outgoing messages, claims, and exit status. If two executors diverge, 
their transition hashes will not match and the Router will reject the batch.  
  
Because of these guarantees, determinism replaces the need for a central sequencer. Validators do 
not need to “agree” on the order of execution in real time — the system ensures that if they see the 
same inputs, they will independently compute the same outputs. This property makes Gear.exe 
resilient to forks, network delays, or adversarial scheduling: finality depends only on threshold 
signatures, not on who executed first. 

 

5.4 Parallelism  

As previously noted, parallelism is foundational to Gear.exe’s scalability. At the execution layer, 
each program operates within its own isolated queue, allowing multiple programs to run 
concurrently. Deterministic processing within each program ensures safety, while allowing 
horizontally scalable execution across threads.  

From a performance standpoint, Gear.exe leverages multi-core hardware to accelerate computation: 
benchmarks—such as a Mandelbrot set simulation—demonstrated that Gear.exe can distribute 
workloads across multiple CPU threads, fully utilizing hardware parallelism for drastic performance 
gains. Gear is capable of scaling with available hardware; in many systems, up to 16 threads may 
be used for parallel execution, though actual limits depend on the specific hardware configuration.  

Parallelism also extends to the architecture’s validator and router layers, opening multiple scaling 
paradigms:  

• Single Router with unified validator set: All validators serve all programs under one Router 
instance—simple and consistent.  

• Multiple independent Routers (clusters): Each Router has its own validator set and serves its 
own program pool, enabling horizontal scaling across Gear clusters via the Ethereum L1 
anchor.  

• Subgrouped validators within one Router: Validators can be partitioned to handle subsets of 
programs, reducing intra-cluster synchronization and enabling finer-grained scaling within a 
single network.  

These models can be combined, forming a scalable execution fabric: computation scales both 
within programs (via threads) and across Gear clusters, all while preserving Ethereum-level 
security and continuity.  

 

 
 
 

https://medium.com/@gear_techs/gear-exe-scientific-benchmarking-of-a-blockchain-co-processor-4854359c1780


 27 

5.5 Timing Windows 
In Gear.exe, execution is not only about ordering inputs correctly but also about making sure they 
happen within the right time window. Timing windows define when an action is valid and how long it 
stays valid. This matters because Gear.exe connects two timelines:  

• Ethereum L1, where blocks appear every ~12 seconds and may reorg,  
• Gear.exe eras, where validators execute and commit batches atomically.  

Each operation has its own timing rules. Validator elections must be submitted just before the next 
era begins — too early or too late and the Router rejects them. Batch commits are tied to Ethereum 
block timestamps, so if a commit arrives outside the allowed range, it cannot be finalized. Slashing 
challenges also have fixed veto/execute periods to make sure they only apply inside their defined 
era.  
For executors this means they must always track both Ethereum block time and the Router’s era 
index. For example, Router.commitBatch(...) will only accept a batch if the eraIndex matches the 
expected next era and the block timestamp falls inside the allowed window. Middleware applies 
similar checks for storage and slashing.  

The effect is simple: if something comes outside its timing window, it is invalid by definition. This 
prevents replay of old signatures, blocks arriving out of order, or late commits slipping into the 
system. For clients and users, it also means predictability: once the window closes, previews can 
safely be treated as final.  

  
 
 
 
 
 
 
 
 
 
 



 28 

5.6 Reverse-Gas Model  

 
  

In Gear.exe, transaction costs are flipped compared to the standard Ethereum gas model. On 
Ethereum, every caller pre-pays gas for execution, which makes even simple user interactions 
depend on unpredictable compute costs. Gear.exe introduces the Reverse-Gas Model, where users 
only pay Ethereum L1 gas in ETH to submit their message, while the actual program execution is 
funded from the program’s own balance in wVARA.  
Anyone can fund a program’s execution by sending wVARA to its Mirror.sol via a top-up call via 
executableBalanceTopUp(...).  

Mirror immediately pulls the tokens into the Router during ingress. The Router acts as a central 
accountant: it tracks how much executable balance each program has and ensures that no 
computation is ever attempted without being pre-funded. In other words, the Router maintains a 
secure ledger of balances for all programs, and executors simply observe these events off-chain.  

Executors then process program queues deterministically in the Gear WASM runtime. They know 
exactly how much balance is available to each program by observing ingress logs from Router, and 
they simulate execution accordingly. CPU time is metered with a predictable policy — every 
program gets a free compute threshold first, and beyond that compute is charged at a fixed 
wvaraPerSecond rate. If a program’s balance is insufficient, its messages are not discarded; they 
simply remain queued until more funds arrive. Importantly, executors never “run on IOUs” because 
the Router has already pulled the wVARA upfront, guaranteeing solvency before any off-chain 
execution starts.  



 29 

Final settlement on Ethereum L1. When executors submit a batch via commitBatch(...), the Router 
enforces chaining and signatures and then applies the batch atomically. As part of settlement the 
Router debits the program’s Executable Balance (on the Router) for the metered compute.  

  
This is why Gear.exe calls the mechanism the Reverse-Gas Model. Instead of users being forced to 
pre-pay gas for every execution, programs pay for themselves from their pre-funded balances. 
Users enjoy a smooth experience — they only spend ETH for the L1 transaction — while programs 
retain control over how their compute is funded, whether through prepaid deposits, value attached 
to messages, or external top-ups. At the same time, executors are protected from unfunded 
execution because Router enforces strict balance discipline at the point of settlement.  

The result is a model that combines better UX, predictable costs, and protocol-level safety. Users 
interact with Gear programs just like any Ethereum contract, but under the hood, balances are 
managed in reverse — ensuring execution is always prepaid and never dependent on the caller’s 
willingness or ability to fund gas. 

 

Why Mirror Does Not Maintain Execution Balance  
In Gear.exe, program execution balances are never stored on the program’s own Mirror contract. 
Instead, all wVARA for compute lives in the Router. This makes life easier for executors: they all look 
at one place, the Router’s ledger, and always see the same balances. If Mirrors held their own 
balances, cross-program calls could end up in different orders on different nodes, breaking 
determinism. With a single accountant, everyone processes the same numbers in the same order.  
It also keeps settlement safe. A batch on Ethereum L1 must either apply fully or not at all. If Mirrors 
moved funds before a batch was finalized, money could “leak” and then be rolled back 
inconsistently. By holding execution balances in the Router until finality, the system guarantees 
atomicity: nothing moves until the batch is proven valid. Only then, if the program is meant to 
receive value for its logic, does the Router transfer it to the Mirror. This way the Router handles 
compute funding, and the Mirror only ever holds tokens that are safe for the program to spend.  

  

5.7 Reorgs & Batch Chaining 
In Gear.exe, history must stay linear even though Ethereum itself can reorder blocks during short-
range reorgs. Executors therefore treat Ethereum as a moving target: they always follow the node’s 
current best head and rebuild their previews if that head changes.  

Whenever a new Ethereum head arrives, executors collect and order Router/Mirror logs up to that 
point and replay programs deterministically. The result is assembled into a batch — a package of 
state transitions, code updates, rewards, and validator changes. Every batch carries the hash of the 
previous committed batch, so the Router can only accept it if it chains directly from the last finalized 
step.  

This chaining rule makes the on-chain record strictly linear. Even if executors worked on a preview 
for a block that later got reorged out, they simply throw away that preview, recompute from the new 
head, and resubmit. From the Router’s perspective, there is no fork: only a single linked chain of 
batches.  



 30 

Finalization is all-or-nothing. If the batch’s signatures, timing, or chaining checks fail, the commit 
reverts as a whole. If it passes, the Router commits the new hash, applies all state transitions 
atomically, and emits a fresh HeadCommitted event. No partial counters, no half-applied top-ups — 
either the entire batch lands, or nothing does.  
Pre-confirmations fit naturally into this model. Executors can expose off-chain results to users right 
after local replay, giving applications instant feedback. But these results are always provisional: if 
Ethereum reorgs before the batch is finalized, the preview may be replaced by a recomputed one. 

 

5.8 Safety Constraints (Summary) 
This section serves as a brief recap of the previous design details. It highlights the core invariants 
that explain why Gear.exe can guarantee safe execution and final application of results without 
requiring a trusted sequencer or coordinator.  

Deterministic programs — All executors consume the same ordered input stream and run it inside 
a sandboxed WASM runtime. No nondeterminism, no external syscalls. If two executors diverge, 
their transition hashes will not match and the Router will reject the batch.  
  
Isolated accounting — Mirrors enforce ingress/egress balance discipline. Value is always credited 
before execution, charged deterministically during runtime, and applied atomically on settlement. 
Executors never rely on IOUs.  
  
Atomic batches — The Router only accepts batches that chain correctly, carry threshold signatures 
from the current validator set, and pass timing checks. If any check fails, the entire batch reverts.  
  
Timing discipline — Elections, commits, and slashing all happen inside explicit windows, aligned 
with Ethereum blocks and Router eras. Anything outside these windows is invalid by definition.  
  
Together, these constraints summarize why Gear.exe maintains safety even under reorgs, 
validator rotations, or adversarial inputs: determinism ensures agreement, accounting ensures 
solvency, and atomic batch rules ensure consistency of state.    

 

 

 

 

 

 

 

 



 31 

6.ECONOMICS  

The economic model of Gear.exe is built around the wVARA token. It acts both as the fuel for 
program execution and as collateral for validators via Symbiotic. This section explains how wVARA 
is issued, how rewards are funded and split, how slashing ensures accountability, and how 
parameters are configured. 

 

6.1 Token and Bridge scope  

The core asset of the system is wVARA, a wrapped version of VARA issued on Ethereum L1 
through a two-way bridge with Vara Network. When users move VARA from Vara, the native tokens 
are locked and an equivalent amount of wVARA is minted on Ethereum; the reverse process burns 
wVARA and unlocks VARA back on Vara.  

All system contracts — Router, Mirror, and Middleware — operate exclusively with wVARA. Each 
program on Ethereum maintains an Executable Balance, which is consumed to pay for execution 
under the reverse-gas model.  

The same token also secures the validator set: stakers deposit wVARA into Symbiotic Vaults and 
delegate it to operators. This way, computation and security are tied to one unified asset, avoiding 
liquidity fragmentation.  

  

6.2 Rewards Funding & Splits  

Validator and staker rewards are funded from a dedicated wVARA rewards pool. At batch 
finalization, the Router triggers distribution by calling into Middleware, which splits rewards across 
operators and their delegating stakers.  

Operators earn rewards directly in proportion to their activity and role in finalizing batches. Stakers 
earn their share via Vaults, proportional to the stake they delegated. The exact parameters — 
emission rate, operator vs. staker share, distribution cadence — are governed and can be updated 
via Router governance. 

 

6.3 Slashing Policy  

To enforce correct behavior, Gear.exe integrates slashing hooks. Misbehavior — such as invalid 
attestations or malicious execution — can trigger a requestSlash through Middleware. The 
corresponding operator’s Vault receives the request, and the VetoSlasher module enforces 
windows for veto and execution.  
If the challenge stands, an executeSlash call burns or confiscates a portion of the operator’s and 
delegators’ wVARA stake. This direct economic penalty ensures that operators remain accountable 
and ties network safety to financial risk. 

 

https://wiki.vara.network/docs/bridge


 32 

6.4 Parameterization  

Key system parameters are configurable and updated via Router governance. Critical parameters 
include: the validator signing threshold (signingThresholdPercentage), the era length (eraDuration), 
the base execution fee rate (wvaraPerSecond), and the free compute allowance (freeThreshold).  

Middleware enforces additional guardrails on Vault registration: for example, veto and slashing 
windows must fit within Router-era boundaries, and era durations must align with Router cycles. 
These constraints prevent timing mismatches between economic and consensus layers.  
Importantly, parameter changes only take effect at era boundaries, ensuring consistent state across 
executors and predictable economics for programs and users alike.  

    

  



 33 

7.GLOSSARY AND TERMS  

Vault (Symbiotic Vault)  
A staking contract in Symbiotic where delegators deposit wVARA. The Vault aggregates stake, 
delegates it to chosen operators, and routes rewards and slashing penalties.  

FROST (Flexible Round-Optimized Schnorr Threshold Signatures)  
A threshold signature scheme that allows a validator group to jointly produce a single Schnorr 
signature. In Gear.exe it is used for co-signing batch commitments.  

VSS (Verifiable Secret Sharing)  
A cryptographic primitive for splitting a secret into shares that can be verified individually and 
reconstructed only in quorum. Gear.exe uses VSS to distribute validator signing keys securely.  

DKG (Distributed Key Generation)  
A protocol that lets a group of validators jointly generate a public key and private shares without any 
trusted dealer. In Gear.exe, DKG is run at each era to derive the new FROST key.  

Restaking / Symbiotic  
Symbiotic is the restaking protocol that provides validator security for Gear.exe. Stakers deposit 
wVARA into Vaults, operators register via Middleware, and the Router activates elected validator 
sets on Ethereum L1.  

SSTORE2  
An Ethereum storage pattern that stores large data (such as validator key material) in minimal 
contracts instead of regular storage slots. Used by Router to persist aggregated keys and VSS 
commitments.  

Clones / ClonesSmall (EIP-1167)  
Minimal proxy contracts deployed deterministically (via salt). Gear.exe uses them to spawn Mirror 
contracts with low gas costs and predictable addresses.  

Reverse-Gas Model  
A model where program execution is funded by the program’s own Executable Balance (wVARA), 
not by the caller. Users only pay L1 gas in ETH to submit a message; execution costs are charged 
against the program’s balance.  

Era (Validator Era)  
A fixed-time period during which a validator set remains active. At the end of each era, new 
validators and FROST keys are elected and committed.  

Batch / BatchHash  
An atomic package of state transitions, code updates, rewards, and validator changes. Every batch 
links to the previous BatchHash, ensuring strict linearity.  

 

https://eips.ethereum.org/EIPS/eip-1167


 34 

 

Executable Balance  
A per-program account (in wVARA) that covers compute costs in the Gear runtime. Execution halts 
if balance is insufficient until more wVARA is topped up.  

Pre-confirmation  
An off-chain, signed preview of a batch at a given Ethereum head. It gives clients off-chain result 
until Router.commitBatch(…) applies the batch on-chain.  

Symbiotic Operator Registry  
The on-chain registry that tracks operators eligible to run Gear executors and receive delegated 
stake.  

VetoSlasher  
A Symbiotic module that enforces delayed slashing: slashing requests are opened with a 
veto/execute window to allow for checks before collateral is penalized.  

    

 


